Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 8364, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102139

RESUMO

Selective autophagy of the endoplasmic reticulum (ER), known as ER-phagy, is an important regulator of ER remodeling and essential to maintain cellular homeostasis during environmental changes. We recently showed that members of the FAM134 family play a critical role during stress-induced ER-phagy. However, the mechanisms on how they are activated remain largely unknown. In this study, we analyze phosphorylation of FAM134 as a trigger of FAM134-driven ER-phagy upon mTOR (mechanistic target of rapamycin) inhibition. An unbiased screen of kinase inhibitors reveals CK2 to be essential for FAM134B- and FAM134C-driven ER-phagy after mTOR inhibition. Furthermore, we provide evidence that ER-phagy receptors are regulated by ubiquitination events and that treatment with E1 inhibitor suppresses Torin1-induced ER-phagy flux. Using super-resolution microscopy, we show that CK2 activity is essential for the formation of high-density FAM134B and FAM134C clusters. In addition, dense clustering of FAM134B and FAM134C requires phosphorylation-dependent ubiquitination of FAM134B and FAM134C. Treatment with the CK2 inhibitor SGC-CK2-1 or mutation of FAM134B and FAM134C phosphosites prevents ubiquitination of FAM134 proteins, formation of high-density clusters, as well as Torin1-induced ER-phagy flux. Therefore, we propose that CK2-dependent phosphorylation of ER-phagy receptors precedes ubiquitin-dependent activation of ER-phagy flux.


Assuntos
Autofagia , Proteínas de Membrana , Fosforilação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Transporte/metabolismo , Estresse do Retículo Endoplasmático , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinação
3.
Cell Rep ; 42(9): 113100, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676773

RESUMO

In ribosome-associated quality control (RQC), nascent polypeptides produced by interrupted translation are modified with C-terminal polyalanine tails ("Ala-tails") that function outside ribosomes to induce ubiquitylation by E3 ligases Pirh2 (p53-induced RING-H2 domain-containing) or CRL2 (Cullin-2 RING ligase2)-KLHDC10. Here, we investigate the molecular basis of Ala-tail function using biochemical and in silico approaches. We show that Pirh2 and KLHDC10 directly bind to Ala-tails and that structural predictions identify candidate Ala-tail-binding sites, which we experimentally validate. The degron-binding pockets and specific pocket residues implicated in Ala-tail recognition are conserved among Pirh2 and KLHDC10 homologs, suggesting that an important function of these ligases across eukaryotes is in targeting Ala-tailed substrates. Moreover, we establish that the two Ala-tail-binding pockets have convergently evolved, either from an ancient module of bacterial provenance (Pirh2) or via tinkering of a widespread C-degron-recognition element (KLHDC10). These results shed light on the recognition of a simple degron sequence and the evolution of Ala-tail proteolytic signaling.


Assuntos
Proteínas de Transporte , Ubiquitina-Proteína Ligases , Humanos , Alanina/metabolismo , Sítios de Ligação , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas de Transporte/metabolismo
4.
Angew Chem Int Ed Engl ; 62(32): e202303319, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37272691

RESUMO

Protein post-translational modification with ubiquitin (Ub) is a versatile signal regulating almost all aspects of cell biology, and an increasing range of diseases is associated with impaired Ub modification. In this light, the Ub system offers an attractive, yet underexplored route to the development of novel targeted treatments. A promising strategy for small molecule intervention is posed by the final components of the enzymatic ubiquitination cascade, E3 ligases, as they determine the specificity of the protein ubiquitination pathway. Here, we present UbSRhodol, an autoimmolative Ub-based probe, which upon E3 processing liberates the pro-fluorescent dye, amenable to profile the E3 transthiolation activity for recombinant and in cell-extract E3 ligases. UbSRhodol enabled detection of changes in transthiolation efficacy evoked by enzyme key point mutations or conformational changes, and offers an excellent assay reagent amenable to a high-throughput screening setup allowing the identification of small molecules modulating E3 activity.


Assuntos
Corantes Fluorescentes , Ubiquitina , Ubiquitina/metabolismo , Cisteína/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo
5.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205381

RESUMO

In Ribosome-associated Quality Control (RQC), nascent-polypeptides produced by interrupted translation are modified with C-terminal polyalanine tails ('Ala-tails') that function outside ribosomes to induce ubiquitylation by Pirh2 or CRL2-KLHDC10 E3 ligases. Here we investigate the molecular basis of Ala-tail function using biochemical and in silico approaches. We show that Pirh2 and KLHDC10 directly bind to Ala-tails, and structural predictions identify candidate Ala-tail binding sites, which we experimentally validate. The degron-binding pockets and specific pocket residues implicated in Ala-tail recognition are conserved among Pirh2 and KLHDC10 homologs, suggesting that an important function of these ligases across eukaryotes is in targeting Ala-tailed substrates. Moreover, we establish that the two Ala-tail binding pockets have convergently evolved, either from an ancient module of bacterial provenance (Pirh2) or via tinkering of a widespread C-degron recognition element (KLHDC10). These results shed light on the recognition of a simple degron sequence and the evolution of Ala-tail proteolytic signaling.

6.
Nature ; 618(7964): 394-401, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225996

RESUMO

The endoplasmic reticulum (ER) undergoes continuous remodelling via a selective autophagy pathway, known as ER-phagy1. ER-phagy receptors have a central role in this process2, but the regulatory mechanism remains largely unknown. Here we report that ubiquitination of the ER-phagy receptor FAM134B within its reticulon homology domain (RHD) promotes receptor clustering and binding to lipidated LC3B, thereby stimulating ER-phagy. Molecular dynamics (MD) simulations showed how ubiquitination perturbs the RHD structure in model bilayers and enhances membrane curvature induction. Ubiquitin molecules on RHDs mediate interactions between neighbouring RHDs to form dense receptor clusters that facilitate the large-scale remodelling of lipid bilayers. Membrane remodelling was reconstituted in vitro with liposomes and ubiquitinated FAM134B. Using super-resolution microscopy, we discovered FAM134B nanoclusters and microclusters in cells. Quantitative image analysis revealed a ubiquitin-mediated increase in FAM134B oligomerization and cluster size. We found that the E3 ligase AMFR, within multimeric ER-phagy receptor clusters, catalyses FAM134B ubiquitination and regulates the dynamic flux of ER-phagy. Our results show that ubiquitination enhances RHD functions via receptor clustering, facilitates ER-phagy and controls ER remodelling in response to cellular demands.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Ubiquitinação , Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ubiquitinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Receptores do Fator Autócrino de Motilidade/metabolismo
7.
J Am Chem Soc ; 144(45): 20582-20589, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318515

RESUMO

We describe the development and optimization of a methodology to prepare peptides and proteins modified on the arginine residue with an adenosine-di-phosphate-ribosyl (ADPr) group. Our method comprises reacting an ornithine containing polypeptide on-resin with an α-linked anomeric isothiourea N-riboside, ensuing installment of a phosphomonoester at the 5'-hydroxyl of the ribosyl moiety followed by the conversion into the adenosine diphosphate. We use this method to obtain four regioisomers of ADP-ribosylated ubiquitin (UbADPr), each modified with an ADP-ribosyl residue on a different arginine position within the ubiquitin (Ub) protein (Arg42, Arg54, Arg72, and Arg74) as the first reported examples of fully synthetic arginine-linked ADPr-modified proteins. We show the chemically prepared Arg-linked UbADPr to be accepted and processed by Legionella enzymes and compare the entire suite of four Arg-linked UbADPr regioisomers in a variety of biochemical experiments, allowing us to profile the activity and selectivity of Legionella pneumophila ligase and hydrolase enzymes.


Assuntos
Adenosina Difosfato Ribose , Arginina , Adenosina Difosfato Ribose/química , Arginina/metabolismo , ADP-Ribosilação , Ubiquitina/química , Proteínas Ubiquitinadas/metabolismo , Peptídeos/química
8.
Nat Commun ; 13(1): 4789, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970836

RESUMO

The covalent modification of target proteins with ubiquitin or ubiquitin-like modifiers is initiated by E1 activating enzymes, which typically transfer a single modifier onto cognate conjugating enzymes. UBA6 is an unusual E1 since it activates two highly distinct modifiers, ubiquitin and FAT10. Here, we report crystal structures of UBA6 in complex with either ATP or FAT10. In the UBA6-FAT10 complex, the C-terminal domain of FAT10 binds to where ubiquitin resides in the UBA1-ubiquitin complex, however, a switch element ensures the alternate recruitment of either modifier. Simultaneously, the N-terminal domain of FAT10 interacts with the 3-helix bundle of UBA6. Site-directed mutagenesis identifies residues permitting the selective activation of either ubiquitin or FAT10. These results pave the way for studies investigating the activation of either modifier by UBA6 in physiological and pathophysiological settings.


Assuntos
Ubiquitina , Ubiquitinas , Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitinas/metabolismo
9.
Chemistry ; 27(7): 2506-2512, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075184

RESUMO

Legionnaires' disease is caused by infection with the intracellularly replicating Gram-negative bacterium Legionella pneumophila. This pathogen uses an unconventional way of ubiquitinating host proteins by generating a phosphoribosyl linkage between substrate proteins and ubiquitin by making use of an ADPribosylated ubiquitin (UbADPr ) intermediate. The family of SidE effector enzymes that catalyze this reaction is counteracted by Legionella hydrolases, which are called Dups. This unusual ubiquitination process is important for Legionella proliferation and understanding these processes on a molecular level might prove invaluable in finding new treatments. Herein, a modular approach is used for the synthesis of triazole-linked UbADPr , and analogues thereof, and their affinity towards the hydrolase DupA is determined and hydrolysis rates are compared to natively linked UbADPr . The inhibitory effects of modified Ub on the canonical eukaryotic E1-enzyme Uba1 are investigated and rationalized in the context of a high-resolution crystal structure reported herein. Finally, it is shown that synthetic UbADPr analogues can be used to effectively pull-down overexpressed DupA from cell lysate.


Assuntos
ADP-Ribosilação , Legionella pneumophila/enzimologia , Doença dos Legionários/microbiologia , Ubiquitina/química , Ubiquitina/metabolismo , Proteínas de Bactérias/metabolismo , Células HEK293 , Humanos , Hidrolases/metabolismo , Legionella pneumophila/crescimento & desenvolvimento , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitinação
10.
Chembiochem ; 21(20): 2903-2907, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32421893

RESUMO

Stable NAD+ analogues carrying single atom substitutions in either the furanose ring or the nicotinamide part have proven their value as inhibitors for NAD+ -consuming enzymes. To investigate the potential of such compounds to inhibit the adenosine diphosphate ribosyl (ADPr) transferase activity of the Legionella SdeC enzyme, we prepared three NAD+ analogues, namely carbanicotinamide adenosine dinucleotide (c-NAD+ ), thionicotinamide adenosine dinucleotide (S-NAD+ ) and benzamide adenosine dinucleotide (BAD). We optimized the chemical synthesis of thionicotinamide riboside and for the first time used an enzymatic approach to convert all three ribosides into the corresponding NAD+ mimics. We thus expanded the known scope of substrates for the NRK1/NMNAT1 enzyme combination by turning all three modified ribosides into NAD+ analogues in a scalable manner. We then compared the three NAD+ mimics side-by-side in a single assay for enzyme inhibition on Legionella effector enzyme SdeC. The class of SidE enzymes to which SdeC belongs was recently identified to be important in bacterial virulence, and we found SdeC to be inhibited by S-NAD+ and BAD with IC50 values of 28 and 39 µM, respectively.


Assuntos
Legionella pneumophila/enzimologia , NAD/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Modelos Moleculares , Conformação Molecular , NAD/síntese química , NAD/química , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química
11.
Cell Res ; 29(7): 512-513, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31000784
12.
Structure ; 25(7): 1120-1129.e3, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28578874

RESUMO

Targeting the activating enzymes (E1) of ubiquitin (Ub) and ubiquitin-like modifiers (Ubls) has emerged as a promising anti-cancer strategy, possibly overcoming the ineffectiveness of proteasome inhibitors against solid tumors. Here, we report crystal structures of the yeast ubiquitin E1 (Uba1) with three adenosyl sulfamate inhibitors exhibiting different E1 specificities, which are all covalently linked to ubiquitin. The structures illustrate how the chemically diverse inhibitors are accommodated within the adenylation active site. When compared with the previously reported structures of various E1 enzymes, our structures provide the basis of the preferences of these inhibitors for different Ub/Ubl-activating enzymes. In vitro inhibition assays and molecular dynamics simulations validated the specificities of the inhibitors as deduced from the structures. Taken together, the structures establish a framework for the development of additional compounds targeting E1 enzymes, which will display higher potency and selectivity.


Assuntos
Ciclopentanos/farmacologia , Inibidores Enzimáticos/farmacologia , Nucleosídeos/farmacologia , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Enzimas Ativadoras de Ubiquitina/química , Sítios de Ligação , Humanos , Mutação , Ligação Proteica , Pirazóis , Relação Quantitativa Estrutura-Atividade , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Sulfetos , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo
13.
World J Surg ; 39(9): 2132-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25561195

RESUMO

BACKGROUND: While surgical care impacts a wide variety of diseases and conditions with non-operative and operative services, both preventive and curative, there has been little discussion concerning how surgery might be integrated within the health system of a low and middle-income country (LMIC), nor how strengthening surgical services may improve health systems and population health. METHODS: We reviewed reports from several meetings of the working group on health systems strengthening of the Global Initiative for Emergency and Essential Surgical Care, and also performed a review of the literature including the search terms "surgery," "health system," "developing country," "health systems strengthening," "health information system," "financing," "governance," and "integration." RESULTS: The literature search revealed no reports which focused on the integration of surgical services within a health system or as a component of health system strengthening. A conceptual model of how surgical care might be integrated within a health system is proposed, based on the discussions of our working group, combined with sources from the medical literature, and utilizing the World Health Organization's conceptual model of a health system. CONCLUSIONS: Strengthening the delivery of surgical services in LMICs will require inputs at multiple levels within a health system, and this effort will require the coalescence of committed individuals and organizations, supported by civil society.


Assuntos
Prestação Integrada de Cuidados de Saúde/organização & administração , Países em Desenvolvimento , Cirurgia Geral/organização & administração , Prestação Integrada de Cuidados de Saúde/economia , Cirurgia Geral/economia , Sistemas de Informação em Saúde , Humanos , Modelos Organizacionais
14.
PLoS One ; 8(5): e65011, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23738013

RESUMO

Protein-protein interaction is one of the crucial ways to decipher the functions of proteins and to understand their role in complex pathways at cellular level. Such a protein-protein interaction network in many crop plants remains poorly defined owing largely to the involvement of high costs, requirement for state of the art laboratory, time and labour intensive techniques. Here, we employed computational docking using ZDOCK and RDOCK programmes to identify interaction network between members of Oryza sativa mitogen activated protein kinase kinase (MAPKK) and mitogen activated protein kinase (MAPK). The 3-dimentional (3-D) structures of five MAPKKs and eleven MAPKs were determined by homology modelling and were further used as input for docking studies. With the help of the results obtained from ZDOCK and RDOCK programmes, top six possible interacting MAPK proteins were predicted for each MAPKK. In order to assess the reliability of the computational prediction, yeast two-hybrid (Y2H) analyses were performed using rice MAPKKs and MAPKs. A direct comparison of Y2H assay and computational prediction of protein interaction was made. With the exception of one, all the other MAPKK-MAPK pairs identified by Y2H screens were among the top predictions by computational dockings. Although, not all the predicted interacting partners could show interaction in Y2H, yet, the harmony between the two approaches suggests that the computational predictions in the present work are reliable. Moreover, the present Y2H analyses per se provide interaction network among MAPKKs and MAPKs which would shed more light on MAPK signalling network in rice.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/química , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Oryza/enzimologia , Técnicas do Sistema de Duplo-Híbrido , Ligação Proteica , Conformação Proteica , Reprodutibilidade dos Testes , Homologia de Sequência de Aminoácidos
15.
Arch Biochem Biophys ; 506(1): 73-82, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21081102

RESUMO

The toxic metalloid arsenite has become a potential threat to rice growing regions leading to serious contamination in food chain. In the present study effect of different physiological concentration of arsenite that is toxic and triggers the molecular events were evaluated in rice seedlings. Along with severe effect on the growth of rice seedling, production of reactive oxygen species (ROS) and nitric oxide (NO) in arsenite treated rice roots was also observed. Activation of a 42kDa mitogen activated protein kinase (MAPK/MPK) by arsenite was observed in rice leaves and 42 and 44kDa in roots in dose dependent manner. The activated MAPK could be immunoprecipitated with anti-phospho-tyrosine antibody, 4G10. The kinetic of MAPK activation by arsenite was found to be dose dependent. Transcript analysis of MAPK family and immunokinase assay in arsenite treated rice seedling revealed significant level of induction in OsMPK3 transcripts in leaves and OsMPK3, OsMPK4 transcripts in roots. Among MAPK kinase (MKKs) gene family, OsMKK4 transcripts were found to be induced in arsenite treated rice leaves and roots. In-silico homology modeling and docking analysis supported OsMPK3-OsMKK4 interaction. The data indicates that arsenite stress is transduced through MAPK signaling cascade in rice.


Assuntos
Arsênio/toxicidade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oryza/efeitos dos fármacos , Oryza/enzimologia , Arsenitos/toxicidade , Ativação Enzimática/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/química , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/genética , Modelos Moleculares , Complexos Multiproteicos , Óxido Nítrico/metabolismo , Oryza/genética , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...